header images

Output
and
Outcome

An empirical examination of detrended fluctuation analysis for gait data

September 1, 2011

Stride interval series exhibit statistical persistence, and detrended fluctuation analysis (DFA) is a routinely employed technique for describing this behavior. However, the implementation of DFA to gait data varies considerably between studies. We empirically examine two practical aspects of DFA which significantly affect the analysis outcome: the box size range and the stride interval series length. We conduct an analysis of their effect using stride intervals from 16 able-bodied adults, for overground walking, treadmill walking while holding a handrail, and treadmill walking without using a handrail. Our goal is to provide general guidelines for these two choices, with the aim of standardizing the application of DFA and facilitating inter-study comparisons. Based on the results of our analysis, we propose the use of box sizes from 16 to N/9, where N is the number of stride intervals. Moreover, for differentiating between normal and pathological walking with reasonable accuracy, we recommend a minimum of 600 stride intervals.

DOI: 10.1016/j.gaitpost.2009.12.002

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

ece
Innovative Medical Engineering Developments Laboratory
Department of Electrical and Computer Engineering
Swanson School of Engineering
University of Pittsburgh